Mar 31, 2025
Abstract:Purpose: Research has revealed that strength training can reduce the incidence of chronic diseases and physical deterioration at any age. Therefore, having a movement diagnostic system is crucial for training alone. Hence, this study developed an artificial intelligence and computer vision-based barbell squat coaching system with a real-time mode that immediately diagnoses the issue and provides feedback after each squat. In addition, a replay mode allows users to examine their previous squats and check their comments. Initially, four primary characteristics of the barbell squat were identified: body joint angles, dorsiflexion, the ratio of knee-to-hip movement, and barbell stability. Methods: We collect 8,151 squats from 77 participants, categorizing them as good squats and six issues. Then, we trained the diagnosis models with three machine-learning architectures. Furthermore, this research applied the SHapley Additive exPlanations (SHAP) method to enhance the accuracy of issue prediction and reduce the computation time by feature selection. Results: The F1 score of the six issues reached 86.86%, 69.01%, 77.42%, 90.74%, 95.83%, and 100%. Each squat diagnosis took less than 0.5 seconds. Finally, this study examined the efficacy of the proposed system with two groups of participants trained with and without the system. Subsequently, participants trained with the system exhibited substantial improvements in their squat technique, as assessed both by the system itself and by a professional weightlifting coach. Conclusion: This is a comprehensive study that integrates artificial intelligence, computer vision and multivariable processing technologies, aimed at building a real-time, user-friendly barbell squat feedback and training system.
Via
